Computing the integer partition function

نویسندگان

  • Neil J. Calkin
  • Jimena Davis
  • Kevin James
  • Elizabeth Perez
  • Charles H. Swannack
چکیده

In this paper we discuss efficient algorithms for computing the values of the partition function and implement these algorithms in order to conduct a numerical study of some conjectures related to the partition function. We present the distribution of p(N) for N ≤ 109 for primes up to 103 and small powers of 2 and 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Relation between the Protocol Partition Number and the Quasi-Additive Bound

In this note, we show that the linear programming for computing the quasi-additive bound of the formula size of a Boolean function presented by Ueno [MFCS’10] is equivalent to the dual problem of the linear programming relaxation of an integer programming for computing the protocol partition number. Together with the result of Ueno [MFCS’10], our results imply that there exists no gap between o...

متن کامل

k-Efficient partitions of graphs

A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...

متن کامل

A bi-level linear programming problem for computing the nadir point in MOLP

Computing the exact ideal and nadir criterion values is a very ‎important subject in ‎multi-‎objective linear programming (MOLP) ‎problems‎‎. In fact‎, ‎these values define the ideal and nadir points as lower and ‎upper bounds on the nondominated points‎. ‎Whereas determining the ‎ideal point is an easy work‎, ‎because it is equivalent to optimize a ‎convex function (linear function) over a con...

متن کامل

The Partial-Fractions Method for Counting Solutions to Integral Linear Systems

We present a new tool to compute the number φA(b) of integer solutions to the linear system x ≥ 0 , Ax = b , where the coefficients of A and b are integral. φA(b) is often described as a vector partition function. Our methods use partial fraction expansions of Euler’s generating function for φA(b). A special class of vector partition functions are Ehrhart (quasi-)polynomials counting integer po...

متن کامل

Extension of the Bernoulli and Eulerian Polynomials of Higher Order and Vector Partition Function

Following the ideas of L. Carlitz we introduce a generalization of the Bernoulli and Eulerian polynomials of higher order to vectorial index and argument. These polynomials are used for computation of the vector partition function W (s,D), i.e., a number of integer solutions to a linear system x ≥ 0, Dx = s. It is shown that W (s,D) can be expressed through the vector Bernoulli polynomials of h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2007